
HEAT CONDUCTION OF ORTHOGONALLY REINFORCED COMPOSITE MATERIAL 
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The problem of the heat flux in a medium with orthogonally positioned rows of 
periodically applied fibers is solved. 

I. The thermophysical characteristics of so-called hybrid composite materials, as shown 
by the analysis of literature data, have only been determined by approximate methods to date. 
This is because the rigorous formulation of the heat-conduction problem is significantly 
three-dimensional even under the assumption of periodicity of the structure and long reinforc- 
ing elements. The solution of such problems by analytical or numerical methods is associated 
with considerable difficulties, in connection with the complexity of the region of temperature 
determination. Quantitative results of investigating the transverse heat conduction of an 
orthogonally reinforced composite fiber material are outlined below. A rigorous solution 
of the corresponding three-dimensional heat-conduction problem is used, allowing the struc- 
ture of material of sufficiently general type to be considered. 

2. Suppose that a composite material consists of a matrix and two types of fibers dis- 
tributed as shown in Fig. I. The coordinate systems introduced are related as follows: 
z(2)= z(1) + h3 ' x(2) = _y(1), y(2) = x(Z). It is assumed here that the longitudinal axes 
of fibers of the first series lie in the plane z(z) = 0 parallel to the axis x(Z), and the 
distance between two adjacent fibers is b. Fibers of the second series are parallel to the 
axis x(2), and their axes are in the plane z(2) = 0 with a period a in the direction y(2). 
The whole composite material consists of such layers, i.e., its structure is periodic in the 
direction of the z axis with period h. 

If the given material is in the field of a constant heat flux qz, its temperature will be 
a periodic function with period a in the direction x(I) and b in the direction x(2), and quasi- 
periodic in the direction z (with period h). 

3. Following [I], a layer of thickness containing two types of fiber rows is isolated. 
The corresponding heat-conduction boundary problem takes the form 

( ~ + ~ 02) t=0, --~176 <x(l)' Y~176176 (i) 
Ox(~)= Oy(~)--""'--~ + Oz(,)= h i - -  h <  z(~)< ha, 

with the boundary conditions 

I ~ o ~ t  j p(i) , 

-- ~<k<oo, 

] = 1 , 2 .  
The p e r i o d i c i t y  c o n d i t i o n s  on z a r e  

T yk ), h) = T (xk,, + r, 

O 0 - -  o o < k <  oo, (2) 
Oz~l---- 7 T (xii), y(~i), z(ki) - -h)  = ~z~ki) r (x(ki), y(k 0, z~/)), I =  1, 2. 

Here (pk(j), ~k(j)) are cylindrical coordinates related to the k-th fiber of the j-th row; 
t = T(xk(J) , yk(j), zk(j)) in the region where h I - h < Zk(j) < h I and pk(j) > Rj, while t = 
tjk(Pk(j), ~k(j)) in the region pk(j) > Rj, j = I, 2, 3; r is some constant. The coordinates 
xk[J), yk(j), zk(j), pk(j), j = i, 2 are measured in fractions of R I. 
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Fig. i. Structural element. 

The temperature distribution in all the fibers of the j-th row is the same; therefore, 
the matching conditions of the temperature fields are sufficiently well satisfied for fibers 
with k = 0. 

Using the complete system of internal and external biperiodic solutions obtained in [2], 
the temperature fields T(x(Z), y(1), z(Z)) in the matrix is written in the following form, 
taking account of the symmetry with respect to x(z) and y(~) 

2' D<nUC~) (x~n' yr z~ T = A + B z  (~) -v  m~ .,~ ~), 
rn, p,~O 

+ ~.~" D~)U~ ) (x (~), y(~), z (~)) + ~ '  (Gin. exp [8,,,,,z (')] -F H,~n exp [--/6,.,~z (~)]) cos (r (h) cos (j~.9(")), 
n, g ~ f l  m , n ~ O  

where ~m = (2~/a)m; ~n = (2~/b)n; 6mn = Jam 2 + 8n 2; A, B are constants. The prime denotes 
absence of the terms with superscripts simultaneously equal to zero in the sum. The di- 
periodic functions Um~(z) and UnD(~) take the form 

U(i) I E = 

q ~ - - o o  

g~" "(])P~])) ~ m 2  ] ,  [~,~e [exp(i/~'))-k (--I)" exp (--iFq~i))] cos'• 

(3) 

where 

U(i)  1 
o~ :- 2 i  ~- (~ r  ")~ [exp (--i/~P~/)) + (-- 1)~ exp (i~%ul)], 

y$1) + izCj) y~i)_ yr qa(i), z~i) zr 
V + , - - : , 

U(]) [ 

C~n)~ exp 6m,~zU)i (• -( i) '  cos ,• x(i), ' ~  . [ - -  cos y ) t ,n2. J, Z(i)>O, 
n ~ O  

1 ~ ~ (i) ĉ ~ ,• U), cos :x (~ x(t)), (--) ~.~ Cm,,~ exp [6m,~z (h] u~ ~ nl V ) t m2 z(i)<0, 
tZ~0 

cg , _ 

�9 ~ n % m n  , ' , . , O n p , - -  Cl(] ) E n  .... - - -  C('~)~ -- aU)8,,~, ( F - - l ) !  " 

a L>'u . . . .  . ~:~(i)_ ) m 2 1 ~ [ ~  , n , T  nl )  (6m,~-- )~], ] =-1, 2; 

(4) 
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TABLE i. Effective Thermal Conductivity of Fiber Medium 
for Various Geometric Parameters of the Structure 

b ha ~V0 -go -go -go -go -r/. ~~ 

* o o l  lOO lOO I lO lOO I 0 0 I 0 

o ol2,,121ol41 ol 
o,~ 12, ml2,SOlZ,OOl 3,25 
0,4513,2412,1014,30| 3,42 
0,451 2,32/2,20/6,001 2,28 
0,451 2,10/3,00/6,65/ 2,07 
0,3014,88/2, lO/4,3o/ 2,33 
0,3012,10/4,88110,01 1,53 

a (~): b; 

3,77 
2,90 
2,90 
2,13 
1,96 
2,07 
1,48 

0,51 
0,28 
0,77 
0,52 
0,34 
0,94 
0,44 

0,26 
0,15 
0,42 
0,29 
0,19 
0,58 
0,25 

a(~) ---- a; • %:~(:)= ~ ;  ucQ=~, uc~)--ra2-- ~ ;  eo=0,5; e~= l  (p>/1). 

Satisfaction of the periodicity conditions in z in Eq. (2) leads to the following relation 

where 

F _ [ B h + 2 t n ( 1 ) . . ( ~ ) _  ~9) (2) =- v-,ol t~oox-r Do~ Coo0], 

Amn {d(..~ (~) -5 exp [ - -  &nnhs] d ~  (~) -  exp [Smn (2h~-- h)] d(~r2 (~) - -  

exp [titan (2h,-- h -5 hs)] d (~)(~hra. ~ = H . m ~  exp [6m,~ (2hx-- h)] Gmn, 

Am,, {d(~2(') -5 exp [Sra,~hs] d~J (0-5 exp [--  8mr h)] d(rat2(=) -5 

+ exp [-- ~mn (2h~-- h -5 ha) ] d~n )(=)} = exp [-- 8m~ (2hz-- h)] Hm~-sG.m, 

a o  

Aran: [exp (6,nnh)--1]-~; a(i)(t) 2 " ,,~tn(i) C(i) - - r a n  = [--I ) ~,ra~. .~.~, ], I=1, 2. 
p,=0 

The temperature of the fibers in rows I and II of the isolated layer is written as 
follows 

t j =  Qp~Ip (l• p ) exp [t• x ] -5 exp [ip~p(i)], 

j = l ,  2, 
where Ip(x) is a modified p-th-order Bessel function. 

Using the addition theorem for the external solutions of the Laplace equation, the ex- 
pansions in [3], and Eq. (5), the solution for the matrix is written in the cylindrical co- 
ordinates (p(j), ~(j)). From the matching conditions for the temperature fields in the 
matrix and the fibers in Eq. (6), eliminating the unknowns Qnm(J) (J = I, 2), a closed in- 
finite system of linear algebraic equations with the unknowns-'Dm~(j) (j = I, 2) is obtained 

(5)  

(6)  

-51 ,, 

p = l ,  co; 

= 0 ,  

(7)  

D(O"(i)• s D(~ cZ (i) m~ p~ -r- f~ '  E(O ,mn(l)--n m=l ,  oo, p=O, oo, rp~ --.., = 1,2, 
t~=O n,lx=0 

where 

q(O 1 [ O~ ~) (u~) Rj) 
n ;=  (1-----~-) epO~ ~) ( rcCn/l, R~) 

ZjK,, ( ~  R j) ]; 
- -  C J )  

o~" (z) = P Kp (z) - -  Kp+l (z); O~ 2) (z) = P__e_ lp (z) + Ip+l (z); 
g Z 
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TABLE 2. Effective Thermal Conductivities of 
Fiber Medium with Various Filler Properties 

Filler con~nttattlm 

o,46[o,12 o,a9 I o,o9 o,~o I o,o~ 

0 
10 

100 
0 

I0 
100 

0 
10 

100 

- r j  

0 0,17 
0 1,27 
0 1,37 

10 0,18 
10 2,94 
10 3,58 

100 0,19 
100 3,25 
i00 4,08 

0,21 
1,17 
1,24 
0,23 
1,97 
2,16 
0,23 
2,06 
2,26 

0,25 
1,13 
1,18 
0,27 
1,66 
1,76 
0,27 
1,71 
1,82 

E~I) n(2). E ( 2 )  ~(1). 

Kp(X) is a p-th-order MacDonald function; 6p I is a Kronecker delta. The expressions for the 
coefficients CpB~ cp~m(j), yp 0n(j), yp mn(j) are not given here because of ther unwieldi- 
ness. 

This infinite system may be reduced to a system of normal type under the condition of 
no tangency of the fiber surfaces, and hence admits of solution by the reduction method. 

In computer realization of this problem, the unknowns with indices up to m, n, p, ~ = 4 
are retained in the infinite system of unknowns in the calculations. This ensures high ac- 
curacy of the solution; the maximum error in meeting the thermal-contact conditions in Eq. 
(i) is of the order of I%. 

5. Calculating the effective heat-conduction characteristics entails averaging the 
derivatives of the solution with respect to the coordinates in the volume of the elementary 
cell (Fig. i), including fibers of both series. 

For the given problem / aT \ = / a T \ =  0 
\ ax / \ og / 

Therefore 

. / O T  \ 
- -  < qz > ='l~ef \- '~"z / .  ( 8 )  

The mean values of 8T/Sz and qz are written in the form 

/ 0 T \ abh = _ aT dV.,u4- dr: dV:+ - -  dV,,, 
\ az / az ' Oz az 

V M V * V 

d i d  az , az 
VM V, V2 

abh = V~-{- V:+  V2, V :=  ~R~a, V,;-  ~R~b. 

Using  t h e  O s t r o g r a d s k i i - G a u s s  f o r m u l a  and a l s o  Eqs .  ( 2 ) ,  ( 3 ) ,  and (6 )  and t h e  c o n d i t i o n  t h a t  
the temperatures at the matrix and fiber boundaries are equal, the following result is ob- 
tained after appropriate transformations 

/ aT . \  = - - - - 1  F, 
\ O z  / h 

II, 
R~ ]J 

(io) 

Henqe the effective thermal conductivity is written as the 

- -  qz > = ~,o { l----F ' [ ~1) Ix -me2)  
- -  h ~ 2  Do1 - - A T  -r , - ,o t  

R1 

where fj = ~Rj2/a(j)h, j = l, 2. 
ratio of -<qz > to <ST/Sz> 
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Fig. 2. Dependence of lef/10 on the fiber concentration fz of one of the 
rows, in the presence of a row of pores in the orthogonal direction 
( ~ i / ~ 0  = O, f l  = 0 . i ) :  i )  ~2/~o = i00;  2) i0 ;  3) O. 

Fig. 3. Curves of lef/10 as a function of the f iber  concentration f :  i )  
~j/X o = 700 (j = 1.2); 2) 40; 3) i0; 4) 4; 5) O. 

�9 [i 

Thus, to determine the effective thermal conductivity, it is sufficient to have the 
values of only the first two unknowns of the infinite system in Eq. (7). 

6. The given problem includes a sufficiently large number of parameters. In fact, the 
structure of the composite material is determined by such geometric parameters as the fiber 
radii RI, R2; the fiber-packing periods in the rows a, b; the distance between the two 
adjacent rows chosen hs; and the thickness of the characteristic layer h, which is the dis- 
tance between the closest rows of fibers in the same direction. In addition, the thermal 
properties of the material are specified by three thermal conductivities 10, li, ~2. Thus, 
introducing dimensionless quantities, seven different parameters are obtained, in overall 
complexity; this leads to definite difficulties in choosing their numerical values for the 
calculations. Accordingly, the following considerations are appropriate. First, the param- 
eters of the problem are changed so that the influence of the structure parameters and the 
difference in thermal conductivity of the individual phases on the effective heat conduction 
of the given composite material are established by means of a computational experiment. 
Second, a more uniform distribution of the filler in the matrix (R 2 = RI, a = b, h = 2h3, 
%l = ~2) is adopted, for comparison of the calculated values of the transverse thermal con- 
ductivity with those determined in [4]. 

Tables 1 and 2 give values of the relative effective thermal conductivity lef/l 0 for 
different ratios of the structure parameters and thermal conductivities of the fibers (zero 
thermal conductivity corresponds to a pore). The data of Table 1 correspond to a = b, R 2 = 
R l and those of Table 2 to R 2 = 0.5RI, u = b = 2.1RI, h = 2h3; h 3 takes the values 1.6RI, 
2.1RI, 2.6R I with a total concentration of 0.58, 0.44, 0.36, respectively. As follows from 
Table i, the thermal conductivity of the composite with the same total concentration of 
fibers and fixed fiber thermal conductivity depends very significantly on the values of the 
structural parameters. Table 2 gives the variation in effective thermal conductivity as a 
function of the geometric and thermophysical parameters of the material, with strongly dif- 
ferent radii of adjacent fibers (pores). Comparison of the data in Tables 1 and 2 leads to 
the conclusion that, with identical thermal conductivities and concentrations of filler, the 
thermal conductivity of the composite may depend strongly on the ratio of the radii R I and 
R 2 �9 

The curves in Fig. 2 show that, in the presence of some fixed pore concentration, the 
fiber concentration in the orthogonal direction may increase, giving various values of the 
effective thermal conductivity of the composite material, including %ef = 10 (curves 1 and 
2). In this case, the structural parameters are chosen as follows: R 2 = R I, b = 6R l, h 3 = 
2.bRl, h = 5R I, 11 = ~2- Curve 3 corresponds to a material containing only pores (lj/l 0 = 0, 
j = 1.2). 

The dependence of lef/%0 on the concentration f = fl + f= of fibers is shown in Fig. 3 
for various values of the relative thermal conductivity lj/% 0 (j = i, 2); curve 5 corresponds 
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Fig. 4. Dependence of ~ef/~0 on the 
thermal conductivities of the fibers 
kj/k0 (J = i, 2): I) f = 0.71; 2) 
0.50; 3) 0.20. 

to porous material. The dependence of kef/k 0 on kj/%0 (J = i, 2) is shown in Fig. 4 for var- 
ious values of the fiber concentration, with R 2 = RI, a = b, h = 2ha, h 3 =a, %1 = %2. As 
is evident from the figures, %ef/k0 increases at different rates with increase in f and the 
relative thermal conductivity %j/i0 (J = i, 2), depending on the structural parameters. 

Comparing the results obtained with the results of calculating the relative transverse 
thermal conductivity in [4], it may be noted that, at small concentrations (up to f = 0.4) 
and small values of the relative thermal conductivity of the fibers, the values of kef/%0 
are in good agreement; the discrepancy is from 0.5 to 4% with increase in kj/% 0 (j = i, 2). 
The agreement improves with increase in fiber concentration and greater closeness of the 
thermal conductivities to l 0. Thus, for example, for lj/k 0 = 2 (j = I, 2), the calculated 
results for %ef/~0 coincide with those in [4] up to f = 0.6. With increase in kj/%0 (J = I, 
2), the discrepancy increases, and there is coincidence only at small concentrations. For 
f = 0.6 and lj/l 0 = 8 (j = i, 2), the difference is -14%. More satisfactory agreement of 
the results is observed when kj/kQ < 1 (j = I, 2). 

Thus, the accurate solution of the heat-conduction problem constructed here for a compos- 
ite medium with orthogonal packing of the fibers allows the effective heat conduction of the 
medium to be investigated over a wide range of variation of the geometric and thermophysical 
parameters. The strong dependence of the effective heat conduction on these parameters which 
is found indicates the possibility of controlling the heat conduction of composites of this 
class by changing their structure with a fixed concentration and heat conduction of the filler. 

NOTATION 

x, y, z, Cartesian coordinates; p(j), ~(j), cylindrical coordinates in a coordinate sys- 
tem associated with the j-th row of fibers; a , distance between neighboring fibers of the 
second row; b, distance between neighboring fibers f of the first row; h, thickness of the 
isolated layer containing two types of orthogonal fiber rows; hl, distance between boundary 
of the isolated layer and a plane containing the axes of the fibers of the first row; h 3, 
distance between the axes of fibers in a different direction; Rj, fiber radius in j-th row; 
fj, concentration of fibers in j-th row; l 0 , thermal conductivity of matrix material; lj, 
thermal conductivity of fiber material in the j-th row; lef, effective thermal conductivity 
of composite material; T, temperature in matrix; tj, temperature in fiber of the j-th row; 
qz, heat-flux component parallel to axis Oz; A, B, F, constants. 
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